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Abstract

An important emerging scientific issue is the real time filtering through observations of noisy turbulent signals for com-
plex systems as well as the statistical accuracy of spatio-temporal discretizations for such systems. These issues are
addressed here in detail for the setting with plentiful observations for a scalar field through explicit mathematical test cri-
teria utilizing a recent theory [A.J. Majda, M.J. Grote, Explicit off-line criteria for stable accurate time filtering of strongly
unstable spatially extended systems, Proceedings of the National Academy of Sciences 104 (4) (2007) 1124–1129]. For plen-
tiful observations, the number of observations equals the number of mesh points. These test criteria involve much simpler
decoupled complex scalar filtering test problems with explicit formulas and elementary numerical experiments which are
developed here as guidelines for filter performance. The theory includes information criteria to avoid filter divergence with
large model errors, asymptotic Kalman gain, filter stability, and accurate filtering with small ensemble size as well as rig-
orous results delineating the role of various turbulent spectra for filtering under mesh refinement. These guidelines are also
applied to discrete approximations for filtering the stochastically forced dissipative advection equation with very turbulent
and noisy signals with either an equipartition of energy or �5/3 turbulent spectrum with infrequent observations as severe
test problems. The theory and companion simulations demonstrate accurate statistical filtering in this context with implicit
schemes with large time step with very small ensemble sizes and even with unstable explicit schemes under appropriate
circumstances provided the filtering strategies are guided by the off-line theoretical criteria. The surprising failure of other
strongly stable filtering strategies is also explained through these off-line criteria.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The need for real time predictions in extended range forecasting of weather and climate drives the devel-
opment of improved strategies for data assimilation or filtering. Filtering combines the observed features of
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the chaotic turbulent multi-scale signal together with the evolution of a dynamical model for the coupled
atmosphere–ocean system. The dynamical models, general circulation models, often have significant model
errors compared with the behavior in the observed signal and both the model and observed signal involve
many spatio-temporal scales, rough turbulent energy spectra near the resolved mesh scale, and a large dimen-
sional state space. There is also the inherently difficult practical issue of the ‘‘curse of ensemble size” since there
is a large computational overhead in propagating the dynamical operator and this restricts the predictions to
relatively small ensemble sizes [18]. Another major issue [29] is that one might improve the resolution of the
forward model but not improve the filtering skill significantly due to model error or the nature of the
observations.

One goal of the present paper is to develop theoretical criteria as guidelines which can address all the above
issues for filtering turbulent signals in an idealized context which nevertheless can provide useful insight into
these difficult problems. A second goal is to provide alternative computational strategies to filter noisy turbu-
lent signals which have some skill while dealing with the ‘‘curse of ensemble size”. Thus, a central scientific
issue is the following one: How to develop practical mathematical criteria for accurate filtering of such com-
plex systems which can increase computational efficiency while remaining a statistically accurate approxima-
tion to the true filtering behavior? This clearly depends on many features of the complex filtering problem such
as:

(I.A) The specific underlying dynamics.
(I.B) The energy spectrum at spatial mesh scales of the observed system and the system noise, i.e. decorrela-

tion time, on these scales.
(I.C) The number of observations and the strength of the observational noise.
(I.D) The time scale between observations relative to (I.A) and (I.B).

Central practical computational issues for the filtering in the above context to avoid the ‘‘curse of ensemble
size” are the following:

(II.A) When is it possible to use for filtering the standard explicit scheme solver of the original dynamic equa-
tions by violating the CFL stability condition with a large time step equal (proportional) to the obser-
vation time to increase ensemble size yet retain statistical accuracy?

(II.B) When is it possible to use for filtering a standard implicit scheme solver for the original dynamic equa-
tions by using a large time step equal to the observation time to increase ensemble size yet retain sta-
tistical accuracy?

Clearly resolving the practical issues in II involves the understanding of I in a given context. This
paper involves the development of explicit mathematical criteria for filtering complex systems which
address all of the subtle issues outlined in I and II for a scalar field with ‘‘plentiful” observations,
i.e., the number of observation points equals the number of discrete mesh points. The work presented
here is based on the mathematical theory developed recently in [22] where the analogue of linearized con-
stant coefficient stability and error analysis for deterministic finite difference schemes [27] has been devel-
oped for complex filtering problems incorporating all of the features in I for general s� s systems of
stochastic partial differential equations with either plentiful or sparse observations. In the simplified con-
text of the present paper, there is large model error introduced through standard discretizations which
attempt to filter noisy turbulent signals with infrequent observations compared to the local correlation
time of the turbulence.

For plentiful observations, this theory rigorously establishes that the understanding of filtering properties
for difference approximations to the stochastically forced scalar PDE reduces to understanding the filtering
properties of spatio-temporal discrete approximations to a much simpler decoupled complex scalar constant
test problem for each spatial wave number. These complex scalar test problems are given by
duðtÞ
dt
¼ kuðtÞ þ ~r _W ðtÞ; ð1Þ
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where uðtÞ ¼ aðtÞ þ ibðtÞ and _W ðtÞ ¼ _W 1ðtÞ þ i _W 2ðtÞ is complex white noise, i.e. _W 1ðtÞ and _W 2ðtÞ are indepen-
dent real white noises in time with variance 1/2. The theory from [22] is summarized in Section 2 for the setting
in this paper involving plentiful observations. Thus, to achieve understanding of the issues in I and II and the
role of model error for the case of plentiful observations, one needs first to develop a complete understanding
of these issues for filtering the simpler test problems in (1); this is developed in Section 3 below through explicit
mathematical formulas for the asymptotic Kalman gain and asymptotic filtering stability for (1) as functions
of the parameters listed in I as well as an explicit information criteria to reduce model error; the practical com-
putational issues for filtering in II are also addressed in Section 3 for the simpler scalar test problem in (1)
which are often necessarily in ‘‘stiff regimes” in order to develop meaningful criteria for filtering turbulent sig-
nals for the discretized PDE.

In Section 4, we provide rigorous theoretical criteria in this idealized context which provide guidelines into
the following important practical questions for operational models: If plentiful observations are available on
refined meshes, what is gained by increasing the resolution of the operational model? How does this depend on
the nature of the turbulent spectrum? The analysis is elementary but involves an interesting interplay among
the conditions in I.

The explicit test criteria developed in Section 3 are applied in Section 5 for filtering turbulent signals
with unstable explicit and stable implicit upwind or centered difference approximations to the stochastically
forced dissipative advection equation for a variety of turbulent spectra and mesh sizes; also numerical
experiments are presented there which demonstrate various practical facets of the theory regarding the
issues in I and II. It is worthwhile to note that some operational models utilize implicit schemes for
the gravity waves [28] so that our results on implicit schemes have additional interest besides the present
context. The computational results in Section 5 establish that the off-line mathematical criteria involving
information theory for system noise, the asymptotic Kalman gain, and asymptotic filter stability can be
used to both determine and explain the success or failure of various filtering strategies with large model
errors for turbulent solutions of the stochastic PDE. These results also establish the utility of the Fourier
diagonal filters as guidelines for the behavior of the extended Kalman filter in physical space. They also
suggest alternative Fourier diagonal filtering strategies with model error which nevertheless have significant
skill in filtering turbulent signals yet avoid the ‘‘curse of ensemble size”. An application of these ideas to a
chaotic turbulent dynamical system with forty degrees of freedom has been developed recently by two of
the authors [17].

The present work is motivated by earlier work on Bayesian hierarchical modeling [4] and reduced order
filtering strategies [25,13,30,2,3,7,10,11,26,16] that have been developed with some success in these extremely
complex systems. The basis for such dynamic prediction strategies for these complex spatially extended sys-
tems is the classical Kalman filtering algorithm [8,20,1] which is also utilized here.

Finally, we mention interesting work of Cohn and Dee [9] who developed a theory for checking the
observability criteria [8,19,14] for filtering discrete approximations to constant coefficient PDE’s. Recently,
Grote and Majda [14] developed simple crude mathematical criteria for filtering unstable systems and
explicitly demonstrated their importance in stable accurate filtering utilizing an unstable difference scheme
for a stochastically forced convection-diffusion equation with identical parameters as in Section 5.2 but
with a smoother spectrum. In [14], it was also demonstrated that the simple observability criteria from
[9] provide a necessary condition for stable filtering but have limited utility from a practical viewpoint
in addressing the central issues in II above; examples are given in [14] where the observability criterion
from [9] is satisfied but is practically useless because the asymptotic filter covariance matrix has condition
number 1013!

2. Theory for filtering discretizations of stochastic PDE’s with plentiful observations

2.1. The perfect model signals

The signals which will be filtered through plentiful observations applied to various spatio-temporal discret-
ization, the perfect truth signals, are determined by solutions of the real valued scalar stochastically forced
PDE
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ouðx; tÞ
ot

¼ P
o

ox

� �
uðx; tÞ � c

o

ox

� �
uðx; tÞ þ rðxÞ _W ðtÞ; ð2Þ

uðx; 0Þ ¼ u0ðxÞ: ð3Þ
Here rðxÞ _W ðtÞ is a Gaussian statistically stationary spatially correlated scalar random field and _W ðtÞ is white
noise in time while the initial data u0 is a Gaussian random field with non-zero mean and covariance. As in
usual finite difference linear stability analysis, the problem in (2) is non-dimensionalized to a 2p-periodic do-
main so that continuous and discrete Fourier series can be utilized in analyzing (2) and the related discrete
approximations.

The operators P o
ox

� �
and c o

ox

� �
are defined through unique symbols at a given wave number k by
P
o

ox

� �
eik�x ¼ ~pðikÞeikx;

c
o

ox

� �
eik�x ¼ cðikÞeikx:

ð4Þ
We assume that ~pðikÞ is wave-like so that
~pðikÞ ¼ ixk ð5Þ

with �xk the real valued dispersion relation while cðikÞ represents both explicit and turbulent dissipative pro-
cesses so that cðikÞ is non-negative with
cðikÞ > 0 for all k 6¼ 0: ð6Þ

In geophysical applications, it is natural to have a climatological distribution and as discussed below, (5 and 6)
are needed in order to guarantee this.

2.2. The stochastically forced dissipative advection equation

The main example of (2) studied in Section 5 as a prototype in this paper is given by the stochastically
forced dissipative advection equation
ouðx; tÞ
ot

¼ �c
ouðx; tÞ

ox
� duðx; tÞ þ l

o
2uðx; tÞ
ox2

þ rðxÞ _W ðtÞ: ð7Þ
In this example, ~pðikÞ ¼ ixk ¼ �ick and the damping symbol cðikÞ is given by
cðikÞ ¼ d þ lk2: ð8Þ

The slight abuse of notation in (7) and (8) should not confuse the reader. In (8), we require d P 0 and l P 0,
and at least one of these coefficients to be non-zero in order to satisfy (6). The case with uniform damping,
d > 0, but without scale dependent damping so that l ¼ 0 arises often in idealized geophysical problems where
d represents radiative damping, Ekman friction or gravity wave absorption [23,24]. In general P o

ox

� �
can be any

differential operator which is a combination of odd-derivatives to satisfy (5) while c o
ox

� �
is a suitable combina-

tion of even derivative satisfying (6) (see Chapter 1 of [24] for the precise conditions). The full generality in (4)
is important for geophysical equations such as the quasi-geostrophic equations where ~pðikÞ is not a polynomial
but is given by ~pðikÞ ¼ ik

k2þF
[24], where F is a non-dimensionalized unit that represents the square of a ratio

between the Froude and the Rossby numbers.
The general solution of (2) is defined through Fourier series. The 2p-periodic solution of (2) is expanded in

Fourier series
uðx; tÞ ¼
X1

k¼�1
ûkðtÞeikx; û�k ¼ û�k ; ð9Þ
where ûkðtÞ for k > 0 solves the scalar complex coefficient stochastic ODE’s [12],
dûk ¼ ½~pðikÞ � cðikÞ�ûk dt þ ~rk dW k; ûkð0Þ ¼ ûk;0: ð10Þ
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Here the W k are independent complex Wiener processes for each k and the independent real and imaginary
parts have the same variance 1/2; the coefficients û�k for k > 0 are defined through the complex conjugate for-
mula û�k ¼ û�k and the constant k ¼ 0 Fourier mode is real-valued with a similar single equation with detailed
discussion omitted here. Under the natural simplifying assumption that the symbols ~pðikÞ and cðikÞ satisfy (5)
and (6), the statistical equilibrium distribution for (10) exists and is a Gaussian with zero mean and variance,
Ek, defining the climatological energy spectrum given by
Ek ¼
~r2

k

2cðikÞ ; 1 6 k < þ1: ð11Þ
Mathematically, one needs to require
P

Ek <1 to define the stochastic solution of (2) correctly with a similar
requirement on the Gaussian initial data in u0ðxÞ. While distinct Fourier modes with different magnitudes are
uncorrelated, the correlation function at a given mode in the statistical steady state is given by
hukðt0Þu�kðtÞi ¼ Rkðjt � t0jÞ ð12Þ
hukðt0Þu�kðtÞi ¼ Eke�ck jt�t0 j cosðxkðt � t0ÞÞ: ð13Þ
In (12) and (13), the damping coefficient, ck ¼ cðikÞ defines the correlation time, c�1
k , while ixk ¼ ~pðikÞ defines

xk, the oscillation frequency at wave number k. Clearly, c�1
k measures the memory in the signal being filtered.

As discussed in [22], the noise in (10) and (11) represents the turbulent fluctuations on the mesh scale for both
unresolved and resolved features of the non-linear dynamics ([24,23] and references therein) with a given en-
ergy spectrum Ek and decorrelation time ck at each wave number. In this fashion the features in (I.A) and (I.B)
are incorporated in the constant coefficient test problem. In practical problems, quite often the nature of this
spectrum is known roughly as well as the decorrelation time, expressed, through the damping coefficient ck

[24,23,22]. The theory from [14] also applies in the unstable setting with ck < 0 but will not be discussed here.
In this paper, one space dimension is not a restriction for any of the results but is utilized to avoid cumbersone
notation; the theory below also applies in several variables.

2.3. The discrete approximation

Standard finite difference approximations operate on a family of equispaced 2N þ 1 mesh points,
xj ¼ jh; 0 6 j 6 2N , with ð2N þ 1Þh ¼ 2p. If real-valued functions fj, are defined on mesh points then with
the complex inner product,
ðf ; �gÞh ¼
h

2p

X2N

j¼0

fjgj; ð14Þ
the discrete Fourier coefficients, f̂ k are defined by f̂ k ¼ ðf ; eikxjÞh for jkj 6 N , with the well-known properties
fj ¼
X
jkj6N

f̂ k eikxj ; f̂ �k ¼ f̂ �k ; ð15Þ

ðf ; f Þh ¼
X
jkj6N

jf̂ kj2:
For a standard finite difference approximation to (2) without any random noise with a time step Dt, the solu-
tion is expressed in standard fashion [27] in terms of the amplification factor, F h;k, for integer k with jkj 6 N .
With the finite Fourier expansion
uh ¼
X
jkj6N

ûh
k eikx; ð16Þ
the general discrete approximation of (2) is given at the observation times mDt through its Fourier coefficients
ûh

k by the block diagonal operation,
buh
k;mþ1jm ¼ F h;kbuh

k;mjm þ rh;k;mþ1: ð17Þ
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In (17), the zero mean complex Gaussian noises, rh;k;m, are uncorrelated in time and their second moment aver-
ages satisfy
hrh;k;mr�h;k0 ;mi ¼ dkþk0rh;k; jkj; jk0j 6 N ð18Þ
with rh;k the variance at wave number k and dj the delta function. The consistent notation F k ¼ eð~pðikÞ�cðikÞÞDt is
utilized for the amplification factor of the exact solution operator in (10). In order to address the computa-
tional efficiency and accuracy issues mentioned in II above, it is not obvious that the best choice of the noise
in (17) arises from a straightforward time discretization of the noise; in fact, we will see below in Section 3 that
it is often interesting and advantageous to pick the noise in (17) and (18) in a completely different fashion to
avoid filter divergence [8,19,1,22] even for a stable filter.

2.4. Plentiful observations

There are 2N þ 1 spatial grid points in the finite difference operator; in the case of plentiful observations
discussed here, there are 2N þ 1 observation points, ~xj, 1 6 j 6 2N þ 1 (not necessarily the grid points) where
the signal from (2) is sampled by the solution of the difference equation in (16)–(18) so that
vð~xj;mDtÞ ¼ guð~xj;mDtÞ ¼ g�uh
mjmð~xjÞ þ ro

j;m ð19Þ
for 1 6 j 6 2N þ 1. In (19) and throughout this paper it is assumed for simplicity in exposition that the obser-
vation time Dt, coincides exactly with the finite difference time step (see [14,22] for the more general case). In
addressing the issues in II, this is not a major restriction since we are interested in approximate methods with
large timesteps. Note that the signal, v, to be observed in (19) is sampled from a (truncated) solution of the
stochastic PDE in (2). The observation measurement errors are assumed to be zero mean Gaussian random
variables which are uncorrelated from site to site and time to time with variance ro ¼ hðro

j Þ
2i. Without loss

of generality, we can set g � 1 in all the analysis below. However, the value of g is retained below when it
is useful to mark the role of the observations in various explicit formulas.

2.5. Reduction of the discrete filter problem to complex scalar test filtering problems

The finite difference approximation defined in (16)–(18) together with the plentiful observations in (19)
defines a 2N þ 1 dimensional filtering problem. Given a Gaussian distribution as an estimate for uh

mjm, the finite
difference scheme with noise defined in (16)–(18) is utilized to advance the Gaussian statistical estimate by the
dynamics to the state uh

mþ1jm; this Gaussian state is then utilized as a prior distribution and is constrained by the
observations in (19) to produce a new Gaussian distribution uh

mþ1jmþ1 which serves as an estimate for the per-
fect signal uðx; ðmþ 1ÞDtÞ from (2) (see [8,19,20,1,14,22]) by the filtering process. The Kalman filter defines the
optimal filter in this setting [8,19,20,1] but there are significant model errors in the choice of discretization and
time step in addressing the central issues in I and II.

Theorems 1 and 2 from [22] rigorously guarantee that the above filtering problem, even when the observa-
tion points do not coincide with the mesh points, can be analyzed by studying the simpler decoupled complex
scalar filtering problems for each different Fourier wave number, k, 0 < k 6 N ,
ûh
k;mþ1jm ¼ F h;kûh

k;mjm þ rh;k;mþ1; ð20Þ
v̂kððmþ 1ÞDtÞ ¼ gûkððmþ 1ÞDtÞ ¼ g�̂uh

k;mþ1jmþ1 þ r̂o
k;m; ð21Þ
where the complex observational noise at each time are independent mean zero Gaussian noise with indepen-
dent real and imaginary parts and
hr̂o
k;mr̂o

k0;mi ¼ r̂odkþk0 ¼
ro

2N þ 1
dkþk0 : ð22Þ
Note that the variance of physical space observational noise ro, gets reduced by the factor, 2N þ 1, when ap-
plied to each of the discrete 2N þ 1 Fourier modes. It is established in [22] that the decoupled scalar problems
in (20)–(22) are an exact representation of the original filtering problem (Theorem 1) when the observation
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points coincide with the discrete mesh points and for general observation points, provide rigorous upper and
lower bounds (Theorem 2).

2.5.1. The truth filter
The truth filter is the special case of the model in (20) with the choice F h;k ¼ F k ¼ expðð~pðikÞ � cðikÞÞDtÞ

and the complex Gaussian system noise rh;k ¼ rk with rk gotten by exact solution of the stochastic equation
in (10) from time step mDt to ðmþ 1ÞDt; thus the real and imaginary parts of rk are zero mean independent
Gaussian with variance rk ¼ Ekð1� e�2ckDtÞ. The perfect signal ûkðmDtÞ, is recovered exactly by the special
case of the truth model where the observational noise covariance, ro satisfies ro ¼ 0 so there is no observa-
tional noise.

In this section, we have established a simplified theoretical context for addressing all of the central issues
for filtering complex systems mentioned in (20)–(22) with rigorous theory guaranteeing a central role for the
special complex scalar filtering problems in (2). All of the explicit issues in I and II are studied next in Sec-
tion 3 for the vastly simpler problems in (2). To simplify notation, the dependence on both spatial wave
number, k, and the hat of the discrete Fourier series are omitted in Section 3. This should not confuse
the reader.

3. Discrete filtering for the complex scalar test problem

The theory developed in Section 2 and in [22] guarantees that successful filtering for the canonical PDE
problem with plentiful observations is based on the number of modes used in the numerical approximation
and on the uncoupled filtering problem obtained at each wave number. In this section, we focus on the
latter, that is on investigating the filtering of the test problem (1). This complex Langevin equation with
k ¼ �cþ ix and ReðcÞ > 0, defines a Gaussian stationary process uðtÞ with zero mean and steady state
variance ~r2=2c. It is useful to remind the reader that the process has a decorrelation timescale given by
T corr ¼ c�1 with oscillation timescale given by x. By letting c ¼ cðikÞ and ix ¼ pðikÞ, this test problem
in (1) is the evolution equation of the kth mode of the PDE problem in Eq. (2). Below, filtering for suit-
able discrete approximations of (1) is studied with plentiful observations at time step mDt. Denoting by
�uh;mjm the discrete approximation at these observation times, we assume plentiful observations with the
form
vm ¼ g�uh
mjm þ ro

m; ð23Þ
where ro
m are independent Gaussian random variables with zero mean and covariance ro. As in our discussion

in Section 2, here we assume that the observations vm are generated from the truth model in (1), in other
words,
vm ¼ guðmDtÞ; ð24Þ

where uðtÞ is a solution of (1).

The important fact to keep in mind is the following one. While the reduction to (1) is exact, in order to
develop meaningful results from the scalar model as guidelines for filtering stochastic PDE in (2), one needs
to study the behavior of the discrete filter model in stiff regimes since ro; x; c and the climatological energy E

all vary widely with varying wave number and mesh spacing as explained in Section 2. Thus, the emphasis here
for the scalar models is to develop comprehensive theory and benchmark simulations to investigate the inter-
play between the often large model errors created by imperfect discrete filters and their capability in extracting
useful information by judicious strategies for these stiff systems.

In this section, a derivation of different filter models based on standard time finite difference schemes is
presented. In each finite difference scheme, we discuss two methods of choosing system noise: either directly
from finite difference approximations or by the information criteria. Next, we present explicit filtering theory
for the test problem in Eq. (1), by obtaining explicit formulas for the asymptotic Kalman gain and the
asymptotic variance. We then compare these off-line testing criteria to computational filter performance
for each strategy. In our numerical simulations, we also show the performance of the filters for different
ensemble sizes.



E. Castronovo et al. / Journal of Computational Physics 227 (2008) 3678–3714 3685
3.1. Filtering derivation

The general time discretization of Eq. (1) at the observation times mDt takes the form of a first order auto-
regressive process (20). In Section 2.5.1, we already encountered one discretization of this filter; the truth
model, obtained from the discretized form of the solution of (1) yields the following amplification and system
noise variance
A ¼ ekDt; ð25Þ

r ¼ ~r2

2c
ð1� e�2cDtÞ: ð26Þ
In Appendix A, we derive three examples of a discrete evolution operator with either forward Euler, backward
Euler or trapezoidal discretization in time. The corresponding amplification factor for each difference method
is given by
Ah ¼ ð1þ kDtÞ ðForward EulerÞ;
Ah ¼ ð1� kDtÞ�1 ðBackward EulerÞ;

Ah ¼ 1� k
Dt
2

� ��1

1þ k
Dt
2

� �
ðTrapezoidalÞ

ð27Þ
with the evolution operator F h in (20) given by Ap
h with observation time T ¼ pDt. For simplicity in exposition,

and since we are interested here primarily in investigating the performance of finite difference filters with long
time step, we use p ¼ 1 and thus F h ¼ Ah, and F ¼ A ¼ ekDt, in the rest of this paper, with Dt the observation
time. Note that forward Euler is strongly unstable for j1þ kDtj > 1. The two implicit schemes are stable inde-
pendent of the time step chosen. One natural way to add noise to approximate the system in (20) is to simply
discretize the stochastic component of the evolution equation in (1). The discretization methods in (27) yield
noises rh;mþ1 with covariances rh given by
rh ¼ Dt~r2 ðForward EulerÞ;
rh ¼ j1� kDtj�2~r2Dt ðBackward EulerÞ;

rh ¼ 1� k
Dt
2

����
�����2

~r2Dt ðTrapezoidalÞ;
ð28Þ
where ~r is the original covariance in Eq. (1) (see Appendix A). While the evolution operator is uniquely deter-
mined by the choice of time discretization scheme, the model noise variance is a parameter that can be chosen
by other systematic criteria. In order to avoid filter divergence, i.e. the situation when the approximate model
predicts an unrealistically small covariance compared with the truth model [1], it is reasonable to choose the
system noise variance rh to minimize this difficulty. In [22], an information theory criterion for choosing the
model noise covariance is proposed. Associated with the truth model filter we have an asymptotic Kalman
gain K1ðekDt; ro; rÞ and a asymptotic variance r1. Immediately below in (30), we show how these quantities
can be obtained analytically for the test models in (1). The information criterion chooses the appropriate sys-
tem noise variance to minimize the relative entropy between the probability density obtained from the truth
filter and the time approximate filter, i.e. the least biased asymptotic covariance value in the finite difference
filter model consistent with the asymptotic truth model [23,24]. In [22] it is shown that rh can be uniquely deter-
mined according to the following criteria:

(A) For the stable case jF hj 6 1, rh is the unique noise covariance with K1ðekDt; ro; rÞ ¼ K1ðF h; ro; rhÞ, which
sets the noise to
rh ¼ ro K1ðekDt; ro; rÞð1� jF hj2ð1� K1ðekDt; ro; rÞgÞÞ
gð1� K1ðekDt; ro; rÞgÞ : ð29Þ
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(B) For the unstable case jF hj > 1: if 1� jF hj�2 P K1ðekDt; ro; rÞ use zero system noise variance, rh � 0; if
1� jF hj�2

< K1ðekDt; ro; rÞ, use the equation in (A) to determine rh uniquely.

For stable F h, the information theoretic criterion chooses the system noise to avoid filter divergence. In this
paper, this criterion will be contrasted and compared with filtering with system noise chosen from the finite
difference discretization in (28). It was pointed out in [22] that for unstable modes with jF hj > 1, zeroing
the system noise, rh, is insignificant when the filter weights more toward the observations. Below we will show
that when there is no system noise generated by the information criteria, it might be helpful to add some sys-
tem noise. However, when the filter is weighted more towards the dynamics the violation of controllability due
to zero system noise degrades the filter significantly.

3.2. Limiting filter and error statistics

If the truth filter and the approximate filter in (20), (23) and (24) are both observable and controllable, then
they are asymptotically stable [8,1,19]. In the test problems discussed here, both criteria are satisfied if there is
non-zero system noise. The asymptotic behavior for the variance r1 and Kalman gain K1 depend on the
observation noise variance, ro, the evolution operator F or F h, and the system covariance r or rh. The quantity
0 6 K1 6 1 expresses the asymptotic weight that the filter assigns to the observations. When K1 ¼ 0, the filter
trusts the dynamics completely while for K1 ¼ 1 the observations determine the evolution of the state
variable. The explicit formula derived in Appendix B for the asymptotic variance and Kalman gain are given
by
r1 ¼ roK1;

K1ðeF ;~ro;~rÞ ¼ K1ð~y;~zÞ ¼
1� ~y � ~zþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ~y � ~zÞ2 þ 4~y

q
2g

;

~y ¼ ~rg
~ro

� �
jeF j�2

; ~z ¼ jeF j�2
:

ð30Þ
The perfect model limiting filter has variance and Kalman gain
r1 ¼ roK1; K1ðekDt; ro; rÞ ð31Þ

while the approximate model has the limiting filter values
rh;1 ¼ roKh;1; Kh;1 ¼ K1ðF h; ro; rhÞ: ð32Þ

The weight the Kalman gain places on the observations depends on the magnitude of the evolution operator
and, the ratio of the model noise rh and the observation noise ro. As this ratio increases so does the asymptotic
Kalman gain.

The limiting Kalman gain also affects the stability of the asymptotic filter [18,19], which is given by the mag-
nitude of
Sh ¼ F hð1� Kh;1gÞ ð33Þ

Theoretically, the filter is stable provided jShj < 1 and clearly this is always satisfied for jF hj < 1 since
0 < jK1gj < 1. However, marginal stability of the discrete filter i.e., jF hj ffi 1 can lead to practical filter insta-
bility when the Kalman gain satisfies K1 ffi 0 and weights toward the dynamics. In [22], it is showed that the
mean model errors for the discrete filter in filtering the truth signal are also controlled by the magnitude of the
stability function; in particular, for jShj ffi 1, the mean model errors decay very slowly. Naively, one might
guess that only stability governs practical filter performance; however, many examples below and in Section
5 show that this is not the case for the discrete filters with finite difference noise in (28). The subtle reason for
this is practical controllability. While theoretically any non-zero system noise variance rh 6¼ 0 guarantees con-
trollability, practically, a finite lower threshold for this noise rh P r� > 0 is needed for stable difference
schemes, the information criteria automatically augment the noise in order to guarantee practical
controllability.



E. Castronovo et al. / Journal of Computational Physics 227 (2008) 3678–3714 3687
Finally, for unstable schemes with zero model noise rh ¼ 0, it is proved in [22] that:
1� K1g ¼ 1

jF hj2
: ð34Þ
This implies that the stability of the filter behaves as
jShj ¼
1

jF hj
; ð35Þ
thus as the unstable evolution operator increases in magnitude the asymptotic stability of the filter increases.

3.3. Filter performance on the test problem

In this section, we discuss the performance of various discretization strategies on filtering the scalar stochas-
tic differential equation test problem (1). Our goal is to utilize the off-line testing criteria developed earlier to
understand the filtered solutions. In particular, we are interested to see the role of the ensemble size in each
filtering strategy and the behavior of the true model and the approximate filtering strategies as we vary the
observation time Dt, the frequency x as well as the observations noise ro; also the role of the information cri-
teria compared to time discretized system noises.

In each numerical simulation shown below, we generate a true trajectory by evolving a randomly chosen
field u0 with (1) for L ¼ 200 steps with time step Dt. With the values of the parameters Dt; x; c; L utilized
below, this is always a time where the mean truth signal relaxes to the climatological state. We simulate each
observation by simply adding uncorrelated Gaussian random variables with mean 0 and variance ro to the true
solution at each observation time Dt in accordance with (25) and (26). Without loss of generality we choose
g ¼ 1. For each assimilation, we simulate with ensembles of size K ¼ 1, 10, 50, 100, 250, and 500 where each
initial ensemble member is a random state uk

0j0, where k ¼ 1; . . . ;K.
Each filtering problem has three parameters: observation time Dt, observation noise ro, and system noise

variance rh as mentioned in (I.B), (I.C) and (I.D) from Section 1. To fully understand the scalar filter perfor-
mance, we need to consider the following regimes:

	 Dt < T corr; Dt ¼ T corr; Dt > T corr: Here, the correlation time T corr ¼ c�1 reflects the time when the determin-
istic part of the system becomes uncorrelated. We are particularly interested to see how the filter performs
when the model dynamics is still relevant ðDt < T corrÞ, when Dt is equal to the autocorrelation time T corr,
and when it is simply a white noise ðDt > T corrÞ.
	 ro < E; ro ¼ E; ro > E: The steady state energy E ¼ r2=2c is basically the system noise r (see Eq. (26)) at

large observation time Dt!1. We consider these regimes because we want to understand the filter per-
formance when the observation noise is very accurate while the system noise is huge ðro 
 EÞ, when both
are comparable ðro ¼ EÞ, and when the observation is not as accurate as the model ro � E.
	 x
 c; x ¼ c; x� c: These regimes reflect several type of oscillators: an over-damped oscillator ðx
 cÞ

to a weakly damped oscillator ðx� cÞ. We shall see later that in the latter stiff case, the filter performance
is very sensitive to the discretization strategies.

Fortunately, we can fully understand the filter performance in all specified regimes by analyzing only the
following three regimes (other regimes gives qualitatively equivalent results):

A. Observation time Dt varies with T corr ¼ 10, x ¼ c, and ro ¼ E.
B. Observation noise ro varies with E ¼ 5, x ¼ c, and Dt ¼ T corr.
C. The frequency x varies with 10�2

6 x 6 102 with damping c ¼ 1, ro ¼ E, and Dt ¼ T corr.

Regime A. In Fig. 1 (first row), we plot the amplitude of F h as a function of the observation time Dt: as the
observation time is increased, we see that forward Euler (first column) becomes unstable and its amplitude
deviates away from the amplitude of the truth operator. The amplitude of the other schemes, backward Euler
(second column) and trapezoidal (third column), are relatively similar to the amplitude of the true filter. In the
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Fig. 1. Off-line testing for Regime A: observations time Dt varies with T corr ¼ 10, x ¼ c, and ro ¼ E. The panels in the first column depict
simulations with forward Euler, second column with backward Euler, and third column with trapezoidal. The first row depicts jF hj, the
second row for rh, the third for kh;1, and the fourth for stability jF hð1� Kh;1gÞj. In each panel, ‘true’ indicates the true filter, ‘fd’ denotes
the finite difference approximate filter, and ‘info’ denotes the approximate filter with information criterion noise variance.
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second row of Fig. 1, we plot the system noise rh as a function of Dt: in the stable discretized schemes, the
information criterion chooses the system noise rh to be closer to the true system noise r. In the unstable dis-
cretized scheme, on the other hand, the system noise rh is zero when jF hj > 1 (see Section 3.1B). In the third
row of Fig. 1, we plot the limiting Kalman gain Kh;1 as function of Dt: when Dt < T corr, the Kalman gains of
both the true filter and the time discretized filter increase as functions of Dt and they eventually saturate after
the system becomes more or less a white noise, i.e. Dt > T corr. When the information criteria are used, the
Kalman gain of the time discretized filter is similar to that of the true model, except when the system noise
is chosen to be zero. In the fourth row of Fig. 1, the stability or jF hð1� Kh;1gÞj is plotted as a function of
time: as we see, all strategies yield stable filtering since jF hð1� Kh;1gÞj < 1.

In Fig. 2 (first row), we show the (RMS) average analysis error as a function of Dt for ensemble of size
K ¼ 500: The average analysis error is defined as follows:
error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

XL

m¼1

ð�umjm � umÞ2
vuut ; ð36Þ
where �umjm denotes the analysis ensemble average. The information criteria improve the time discretized filters
when stable schemes are applied since practical controllability is satisfied. For the unstable scheme, the filter
degrades as the observation time Dt is increased. In this unstable scenario, the information criteria do not im-
prove the filter because the choice of zero system noise violates the controllability criteria while it also alters
the filter to weight more toward the dynamics. In Fig. 2 (second row), the (RMS) average analysis error is
plotted as a function of ensemble size K at Dt ¼ 10: Notice that the larger the ensemble size is, the lower
the errors are. However, the filter performs quite well even with a single realization. Fig. 2 (third row) shows
the average ensemble error variance as a function of ensemble size: The average ensemble error variance is
computed as follows:
error variance ¼ Varðuk
mjm � umÞ; ð37Þ
where the variance is taken over each ensemble member and time. This quantity measures the variation of
errors of an ensemble member compared to other member. From our results, we see that as we increase
the ensemble size, the less varied the error variance is.

Regime B. In Fig. 3 (first row), for reference values we plot the amplitude of F h: all three discretized schemes
are stable although the forward Euler is only marginally stable. Fig. 3 (second row) shows the system noise rh

as a function of ro. In Fig. 3 (third row), we plot the Kalman gain as a function ro: our results suggest that the
larger the observation noise is, the more the filter trusts the dynamics (Kh;1 decreases). When information cri-
teria are used, the Kalman gain of the true filter is the same as that of any discretized filters since they are all
stable schemes. In Fig. 3 (fourth row), the stability is plotted as a function of ro: we see that quantity
jF hð1� Kh;1gÞj increases as a function of ro, which is obvious, since Kh;1 decreases as explained earlier.

In Fig. 4 (first row), we show the (RMS) average analysis error as a function of ro for ensemble of size
K ¼ 500: as predicted earlier, the information criterion reduces the error in all time discretized schemes. In
Fig. 4 (second row), we plot the (RMS) average analysis error as a function of ensemble size K at ro ¼ 5:
as in Fig. 2, we find that the small ensemble size (even with only a single realization) performs quite well.
In Fig. 4 (third row), the average ensemble error variance is plotted as a function of ensemble size: from
our results, we see that as we increase the ensemble size, the less varied the error variance is.

Regime C. In Fig. 5 (first row), we plot the amplitude of F h as a function of frequency x: here, as x
increases, the forward Euler (first column) becomes highly unstable, the backward Euler (second column) is
over-damped while the trapezoidal (third column) is right on the instability boundary. Fig. 5 (second row)
plots system noise rh as a function of x: one very interesting fact is that the time discretized system noises
rh of both backward Euler and trapezoidal schemes tend to zero as x increases, which imply the practical vio-
lation of controllability. When the information criterion is used in the stable schemes, the system noise vari-
ance rh are chosen automatically to be non-zero and the controllability is satisfied. In the unstable schemes,
however, the information criteria set rh ¼ 0 and thus the controllability is not satisfied. Fig. 5 (third row)
shows the Kalman gain as a function of x: as x increases, the unstable scheme tends to trust the observations
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Fig. 2. Filtering solution for Regime A: observations time Dt varies with T corr ¼ 10, x ¼ c, and ro ¼ E. The panels in the first column
depict simulations with forward Euler, second column with backward Euler, and third column with trapezoidal. The first row depicts error
as function of observation time, the second and third rows plot the error and the ensemble error variance (both for Dt ¼ 10), consecutively,
as functions of ensemble size. In each panel, ‘true’ indicates the true filter, ‘fd’ denotes the finite difference approximate filter, ‘info’ denotes
the approximate filter with information criterion noise variance, and ‘obs’ denotes the observation error.
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Fig. 3. Off-line testing for Regime B: observations noise ro varies with E ¼ 5, x ¼ c, and Dt ¼ T corr. The panels in the first column depict
simulations with forward Euler, second column with backward Euler, and third column with trapezoidal. The first row depicts jF hj, the
second row for rh, the third for kh;1, and the fourth for stability jF hð1� Kh;1gÞj. In each panel, ‘true’ indicates the true filter, ‘fd’ denotes
the finite difference approximate filter, and ‘info’ denotes the approximate filter with information criterion noise variance.

E. Castronovo et al. / Journal of Computational Physics 227 (2008) 3678–3714 3691



1 3 5 10 20
0

0.5

1

1.5

2

2.5

3
E

rr
or

ro

Forward Euler

true
fd
info

1 10 100 500
1.5

2

2.5
Error at ro=5

E
rr

or

Ensemble size

true
fd
info

1 10 100 500
0

1

2

3

4

5
Error variance at ro=5

E
rr

or
 v

ar
ia

nc
e

Ensemble size

true
fd
info

1 3 5 10 20
0

0.5

1

1.5

2

2.5

3

E
rr

or

ro

Backward Euler

true
fd
info

1 10 100 500
1.5

2

2.5
Error at ro=5

E
rr

or

Ensemble size

true
fd
info

1 10 100 500
0

1

2

3

4

5
Error variance at ro=5

E
rr

or
 v

ar
ia

nc
e

Ensemble size

true
fd
info

1 3 5 10 20
0

0.5

1

1.5

2

2.5

3

E
rr

or

ro

Trapezoidal

true
fd
info

1 10 100 500
1.5

2

2.5
Error at ro=5

E
rr

or

Ensemble size

true
fd
info

1 10 100 500
0

1

2

3

4

5
Error variance at ro=5

E
rr

or
 v

ar
ia

nc
e

Ensemble size

true
fd
info

Fig. 4. Filtering solution for Regime B: observations noise ro varies with E ¼ 5, x ¼ c, and Dt ¼ T corr. The panels in the first column
depict simulations with forward Euler, second column with backward Euler, and third column with trapezoidal. The first row depicts error
as function of observation noise variance, the second and third rows plot the error and the ensemble error variance (both for ro ¼ 5),
consecutively, as functions of ensemble size. In each panel, ‘true’ indicates the true filter, ‘fd’ denotes the finite difference approximate filter,
‘info’ denotes the approximate filter with information criterion noise variance, and ‘obs’ denotes the observation error.
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Fig. 5. Off-line testing for Regime C: the frequency x varies with 10�2
6 x 6 102 with damping c ¼ 1, ro ¼ E, and Dt ¼ T corr. The panels

in the first column depict simulations with forward Euler, second column with backward Euler, and third column with trapezoidal. The
first row depicts jF hj, the second row for rh, the third for kh;1, and the fourth for stability jF hð1� Kh;1gÞj. In each panel, ‘true’ indicates the
true filter, ‘fd’ denotes the finite difference approximate filter, and ‘info’ denotes the approximate filter with information criterion noise
variance.
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more while the stable schemes with standard discretized noise trust the highly inaccurate dynamics more. With
the information criteria and the stable schemes, of course, the Kalman gain is automatically the same as the
truth model. In Fig. 5 (fourth row), we plot the stability as a function of x: here, we see an indication that the
trapezoidal scheme may not perform as well as all the other strategies when the time discretized system noise is
used since jF hð1� Kh;1gÞj � 1.

In Fig. 6 (first row), we plot the (RMS) average analysis error as a function of x for ensemble of size
K ¼ 500: we see that the unstable scheme fully trusts the observations as suggested by the off-line test criteria.
The backward Euler scheme with augmented noise from the information criterion performs almost as well as
the true filter robustly in x despite the fact that it strongly over damps the dynamics; on the other hand, back-
ward Euler with the standard discretization noise performs poorly for large x.

When the trapezoidal scheme is used, the most interesting regime occurs for large x when jF hj � 1 and the
system noise rh � 0 (see the second row in Fig. 5), where the information criteria makes a significant difference.
Here, we see that for time discretized noise (28), the limiting Kalman gain is close to zero and the violation of
the controllability condition together with a large weight in the dynamics, again, yields unstable filtering for
large x. In this case, the information criteria improve the filter by choosing larger system noise. In Figs. 6 (sec-
ond and fourth rows), we show the (RMS) average analysis errors as functions of ensemble size K for x ¼ 1
and 100, respectively. When x ¼ 1, forward Euler simply trusts the observations regardless of how the system
noises are chosen. Both the backward Euler and the trapezoidal scheme produce comparable errors as the true
filter when the information criteria are used. In an oscillatory case (e.g., x ¼ 100), the information criteria
reduce the errors significantly for the trapezoidal scheme even with only one realization. In both cases
(x ¼ 1 and 100), the performances for small ensemble members (or even with one realization) are comparable
to those with K ¼ 500. Figs. 6 (third and fifth rows) show the average ensemble error variances as functions of
ensemble size for x ¼ 1 and 100: in both cases, we find that the ensemble error variances of all three discretized
schemes are close to that of the truth when the information criteria are used. As the ensemble size is increased,
the backward Euler scheme with time discretized system noise has the lowest ensemble error variance, even
lower than the truth model (this is also true for forward Euler scheme with x ¼ 100). In general, the ensemble
error variances seems to be significantly reduced when large ensemble size is used, except for the trapezoidal
scheme with time discretized noise when x ¼ 100. In this case, the information criteria reduces the ensemble
error variance significantly.

Summary. From our results, we conclude that when we use big time steps (large Dt), both the backward
Euler and trapezoidal schemes are the better approximate schemes, especially when the information crite-
ria are used. The trapezoidal scheme with discretized system noise does not work well when jF hj � 1 with
nearly zero system noise variance rh. This case occurs when the system is highly oscillating with weak
damping (x� c), which happens in many applications (Section 5). The main difficulties are practical vio-
lation of controllability and filter stability jF hð1� Kh;1gÞj � 1 which reflects nearly unstable filtering. In
this situation, we show that the information criterion is a possible remedy. When the information criterion
is used so that practical controllability is guaranteed, the best scheme for practical filter performance
among all the stable approximate schemes can be predicted by theoretical guidelines by looking at the
asymptotic stability factor jF hð1� Kh;1gÞj; a smaller magnitude for this quantity implies a more stable
scheme.

When using an explicit scheme (such as forward Euler), it is an unstable scheme when the damping is weak
compared to the oscillation frequency or when the observation time is larger than the correlation time. In this
case, the filter will be weighted toward the observations and hence the filtered solutions are more or less equal
to simply trusting the observations. The information criterion does not improve the skill here and even has the
potential to put more weight on the (unphysical) dynamics although the practical significance is small (see Sec-
tion 5 below). However, if the filter is fully weighted toward the observations, the violation of the controlla-
bility is irrelevant in our numerical experiments.

We see that, in general, the filter is better when the ensemble size is larger. However, the filter improvement
is not significant in the true filter and in all time discretized filters with increased ensemble size. We found that
even with a single realization, we can get a reasonably good filter solution. Furthermore, the ensemble error
variances decrease as functions of ensemble size, and the errors produced by one ensemble member are not
much different than those produced by other members.
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Fig. 6. Filtering solution for Regime C: the frequency x varies with 10�2
6 x 6 102 with damping c ¼ 1, ro ¼ E, and Dt ¼ T corr. The

panels in the first column depict simulations with forward Euler, second column with backward Euler, and third column with trapezoidal.
The first row depicts error as function of frequency, the second and third rows plot the error and the ensemble error variance (both for
x ¼ 1), consecutively, as functions of ensemble size. The fourth and fifth rows plot the error and the ensemble error variance (both for
x ¼ 100), consecutively, as functions of ensemble size. In each panel, ‘true’ indicates the true filter, ‘fd’ denotes the finite difference
approximate filter, ‘info’ denotes the approximate filter with information criterion noise variance, and ‘obs’ denotes the observation error.
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4. Theoretical guidelines for filter performance under mesh refinement for turbulent signals

In many situations such as local regional numerical weather prediction over populated areas in developed
countries, there are plentiful observations available for many successively refined discrete meshes. Also the
nature of the turbulent spectra in the true dynamics might be white noise in space, reflecting physical processes
such as moist convection over a few kilometers, or another steeper power law in the upper troposphere, reflect-
ing gravity wave activity. Thus, a very interesting and relevant question for operational models is the following
one: If plentiful observations are available, what is gained in filter performance by increasing the resolution of
the operational model? How does this depend on the nature of the turbulent spectrum? Here, we provide the-
oretical guidelines for these important practical issues by answering the above question for filtering the general
turbulent signals from the model in (2) with the truth model itself.

We begin with the case of selective damping, Thus, a basic issue of practical interest in filtering a system like
that in (2) is the following one: given the system in (2) with the scale selective damping cðikÞ, i.e. damping with
increasing wave number, and with the energy spectrum Ek, what is the effect of increasing the number of grid
points with plentiful observations on the Kalman gain? Under what circumstances should most of the weight
be given to the observations alone for filtering at high spatial wave numbers and when should most of the
weight be given to the dynamics alone at high spatial wave numbers? As mentioned above, these are important
issues to consider as guidelines for mesh refinement of the filtering problem in turbulent systems. Here we
answer the above question completely for the asymptotic Kalman gain in the truth model by processing
the explicit formula in (30) in elementary analytic fashion. The answer involves an interesting quantitative
interplay among the factors listed in (I.B), (I.C) and (I.D). Assume that the selective scale damping cðikÞ
and the energy spectrum EðkÞ ¼ Ek are both given by power laws,
cðikÞ ¼ c0jkj
a
; 0 < a < þ1; ð38Þ

EðkÞ ¼ E0jkj�b
; 0 6 b < þ1: ð39Þ
Note that for the moment we require that a > 0 in (38) so that there is actually increased selective scale damp-
ing as jkj increases. Recall from (12) that in the statistical steady state, the decorrelation time of the kth wave
number is given by
T corrðkÞ ¼ ðcðikÞÞ�1 ¼ c�1
0 jkj

�a
: ð40Þ
The filtering properties are determined by the observation time, Dt, and the observational noise variance, ro.
Consider the explicit formula for the asymptotic Kalman gain in (30) for the truth model; for 2N þ 1 discrete
modes, we have
~z ¼ jF kj�2 ¼ e2c0jkjaDt; ð41Þ

~z ¼ jF kj�2 ¼ e2ðT corrðkÞÞ�1Dt ð42Þ
while
~y ¼ AðkÞ~z ð43Þ

with AðkÞ the ratio of system noise to observational noise at wave number k; by using (11) so that for the truth
filter, rk ¼ EðkÞ½1� e�2T�1

corrðkÞDt�, we have
AðkÞ ¼ rkð2N þ 1Þ
ro

¼ ð2N þ 1ÞE0

ro
jkj�b½1� e�2T�1

corrðkÞDt� ð44Þ
for 0 6 jkj 6 N . Note that in (44) we utilized the fact that the observational noise per mode decreases the
observation noise by 2N þ 1. Our intuition for filtering the truth model suggests that if AðkÞ ! 0 as jkj in-
creases, there is more observational noise compared with decreasing system noise so that the filter should trust
the dynamics alone; on the other hand, for AðkÞ ! 1 the observation noise is relatively small and we should
trust the additional observations alone in the filtering problem. Next we evaluate (44) asymptotically for
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N !1 for the wave numbers N=2 6 jkj 6 N (in the argument below, the lower bound with 1/2 can be any
factor smaller than one). From (44), we have the dichotomy

A. For 1� b < 0
max
N
26jkj6N

AðkÞ 6 E0

ro
2bð2N þ 1ÞN�b 
 N 1�b ! 0; ð45Þ
as N !1.
B. For 1� b > 0
min
N
26jkj6N

AðkÞP E0

ro
2�bð2N þ 1ÞN�b 
 N 1�b !1; ð46Þ
as N !1.

This is a quantitative estimate for the intuition mentioned earlier. This intuition is confirmed by the
following.

Theorem 1. For the selective damping with a > 0 and the energy spectrum (39), there are two different universal

regimes of behavior for the filtering problem with plentiful observations for high wave numbers N
2 6 jkj 6 N as

N !1.
(A) For b > 1 the asymptotic Kalman gain matrix tends to zero uniformly for N
2
6 jkj 6 N as N !1. Thus,

in this regime even with plentiful observations, one can trust the dynamics alone on the large wave num-
bers, with a refined mesh.

(B) For b < 1 the asymptotic Kalman gain matrix tends to one uniformly for N
2
6 jkj 6 N as N !1. Thus,

in this regime with plentiful observations, one should primarily trust the observations on the large wave
numbers in the filtering problem with a refined mesh.

Thus, for turbulent signals with b < 1, increasing mesh resolution only weights toward the additional
observations while for b > 1, increased resolution improves the dynamics but the additional observations
are not significant.

As with all asymptotic statements, the validity with a given discrete mesh depends crucially on whether the
quantitative numbers in (45) and (46) are, respectively, large or small and also the growth factor
min
N
26jkj6N

e2 Dt
T corrðkÞ ¼ e21�ac0jN jaDt: ð47Þ
This is the only result in this paper which depends on the spatial dimension; for d-spatial dimensions, the prop-
osition remains valid but the dichotomy 1� b < 0 or 1� b > 0 is replaced by d � b < 0 or d � b > 0. This
arises simply because for plentiful observations in d-dimension we have the factor ð2N þ 1Þd in (22), (45)
and (46) replacing 2N þ 1. We state this in the following corollary.

Corollary 1. In d-space dimensions, Theorem 1 remains valid with d � b replacing 1� b.

With the above background from (42)–(47), the proof of the proposition is elementary through evaluating
the explicit Kalman gain formula in (30). In the situation from (A) with b > 1, we have from (45) and (47) the
uniform asymptotic behavior for N

2
6 jkj 6 N
~z!1; ~y ¼ �~z; �ðNÞ ! 0 ð48Þ
with �ðNÞ determined from (45) so that the explicit Kalman gain satisfies
KðF k; ~y;~zÞ � Oð�ðNÞÞ ! 0 ð49Þ
as N !1 uniformly for N
2
6 jkj 6 N . In the situation from (B) with b < 1, we have from (46) and (47), the

uniform asymptotic behavior for N
2
6 jkj 6 N
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~y !1; ~z ¼ �~y; �ðNÞ ! 0 ð50Þ

with �ðNÞ determined from (46) (B) so that the explicit Kalman gain matrix satisfies
KðF k; ~y;~zÞ � 1�Oð�ðNÞÞ ! 1; ð51Þ

uniformly for N

2
6 jkj 6 N .

Is Theorem 1 still valid with a ¼ 0 in (38) so that there is uniform damping at all wave numbers? In this
case, ~z ¼ e2c0Dt > 1 remains a bounded fixed constant but the dichotomy in (A) and (B) remains valid. For
b > 1, we have ~y ¼ �~z; since ~z is bounded, the asymptotic Kalman gain formula from (30) is given by
1� ~zþ j1� ~zj ¼ 0; ð52Þ

so part (A) of the Proposition is valid. For b < 1, we have ~z ¼ �~y so the identical argument for part (B) is valid.
Thus, we have the following corollary.

Corollary 2. Proposition 1 remains valid with uniform damping at all wave numbers.

In Fig. 7, we plot the asymptotic Kalman gain as a function of wave number k for different resolutions N
for two spectra with the two sets of parameter values in the dissipative advection equation utilized in Sections
5.1 and 5.2 below. Theorem 1 is confirmed as one sees (in the first row of Fig. 7) that the asymptotic Kalman
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gain converges to one for large enough wave numbers when b ¼ 0 (see the first column of Fig. 7) and con-
verges to zero for b ¼ 5=3 (see the second column of Fig. 7). Similar trends are found for uniform damping
case (see second row) which confirm Corollary 2. In this last case, there are large prefactors in front of the
power law so much larger value of N are needed to realize the theory.
5. Discrete filtering for the stochastically forced dissipative advection equation

Here we study filter performance for discretizations of the stochastically forced dissipative advection
equation in (7). One goal is to illustrate how rough turbulent signals generated by (7) can be filtered suc-
cessfully by suitable discretization strategies with significant model error which respect the theoretical and
computational guidelines established in Section 3 for the scalar test problem; these guidelines also explain
inaccurate filtering with strongly stable filters. A second goal is to illustrate and compare these Fourier
filters with the extended Kalman filter in physical space with the same approximation which generates
errors which do not respect the Fourier diagonal covariance structure. Finally, the third goal is to point
toward the potential practical use of Fourier diagonal filters with significant model errors (here these
model errors are generated through spatio-temporal discretization) which are guided by the mathematical
criteria in Sections 2 and 3 as alternatives to ETKF to overcome the ‘‘curse of ensemble size”; tests on a
family of forty dimensional non-linear systems with chaotic instability are developed elsewhere by two of
the authors [17].

5.1. Filtering strongly turbulent signals with uniform damping and infrequent observation

Here we consider discrete filter performance for the equation in (5) with uniform damping and without
selective decay as a stringent test case. Thus, we generate truth signals for filtering (7) with d > 0 but
l ¼ 0. We utilize parameter values c ¼ 1; d ¼ 0:01, and Dt ¼ 50 ¼ T corr=2 where T corr ¼ 1=d ¼ 100 is the dec-
orrelation time at each wave number. For this uniformly damped setting, the amplification factors at each
wave numbers, F k, satisfy jF kj ¼ e�dDt ¼ e�1=2 < 1 so there is strong asymptotic stability in the perfect model
filter in this regime. We consider truth signals generated from two extremely turbulent spectra, an equiparti-
tion spectrum with Ek ¼ 100 and a �5/3 spectrum with Ek ¼ 1000k�5=3.

Next we consider a family of upwind discretizations as discrete filters. We consider a simple upwinding
scheme
o

ox
uðxj; �Þ 


uj � uj�1

h
: ð53Þ
Utilizing the discrete Fourier transform defined in (14), we can rewrite the discrete spatial derivative as
o

ox
uðxj; �Þ !

1� e�ikh

h
ûk: ð54Þ
As in Section 3 for the scalar test problem, we approximate the time derivative with the same three different
time discretized schemes (27) with
kk ¼ �c
1� e�ikh

h
� d: ð55Þ
For implicit Euler and trapezoidal schemes, the condition jF h;kj < 1 is always satisfied for any resolution. In
the trapezoidal schemes, however, almost every mode is marginally stable so that jF h;kj ffi 1 for most modes.
For the unstable forward Euler scheme, the amplitude satisfies jF h;kj > 1 for the coarse mesh N ¼ 20 and as we
increase N, the magnitude of F h;k increases sharply.

5.1.1. Off-line test criteria
Here we utilize the theoretical off-line test criteria developed in Section 3 as a guideline for filter perfor-

mance with these rough spectra. Fig. 8 shows these off-line criteria for the backward Euler (panels a–d)
and trapezoidal methods (panels e and f).
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Fig. 8. Off-line testing of the backward Euler (a–d) and trapezoidal method (e–h) with Dt ¼ T corr=2. The first column shows the off-line
testing with white noise spectrum Ek ¼ 100, the second column shows testing with smooth spectrum Ek ¼ 1000k�5=3. In each subfigure, we
show the truth model (solid line with dots), approximate scheme with time discretized noise (circle) and with information criteria (square).
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In our off-line testing, we predict that the information criteria will improve filtering for both backward Euler
and trapezoidal schemes by giving practical controllability at all wave numbers through augmented system noise.
In this regime, the Kalman gain Kk;1 is close to 1 for the constant energy spectrum but it is much less than 1 for
smooth spectrum Ek 
 k�

5
3 (see panels c and d in Fig. 8). Thus, our theory predicts that the true filter is not much

better than simply trusting the observations for the constant spectrum while it is better for the �5/3 spectrum.
When we employ the information criteria, the better filter among the two schemes is predicted by the asymptotic
stability amplitude jF kð1� Kk;1gÞj. In our simulations, we see that the backward Euler is a better scheme since
jF kð1� Kk;1gÞj � 0 for all k (not shown) while these factors for the trapezoidal method increase as functions of
wave number (panel g,h). Without the information criteria, both the backward Euler and trapezoidal methods
with standard finite difference noise discretization violate practical controllability criteria despite having filter sta-
bility (see circles in panels a, b, e and f); thus the off-line test criteria predict poor filter performance. As in Section
3, for unstable Euler, the off-line criteria predict that this method just trusts the observations.
5.1.2. Numerical simulations of filter performance

We check the actual filter performance with the prediction of the off-line testing shown earlier. In particular,
we also compare results from filtering in the Fourier domain with filtering in real space. The filtering in the
Fourier domain consists of an independent scalar filter (as in Section 3) for each Fourier mode. For the rest
of this paper, we call this filter the Fourier Domain Kalman Filter (FDKF). The real domain filter that we
choose for comparison is the Ensemble Transform Kalman Filter (ETKF) of Bishop et al. [5]. The reason
why we choose this ensemble filter is because it is easily implemented [16] and for large ensemble size. Note
that for the numerical scheme experiments with ETKF, the wave equation in (5) is integrated using an upwind
scheme from (53) in real domain.

For our numerical simulations, we generate the true trajectory by evolving an initial state that looks like a
Gaussian hump, denoted as fûk;0; k ¼ 1; . . . ; 2N þ 1g in Fourier space, with the standard exact large time step
discretization of (10) as in Section 3 for L ¼ 100 steps with time step Dt ¼ 50 ¼ T corr=2. We simulate each
observation by simply adding uncorrelated Gaussian random variables with mean 0 and variance
r̂o ¼ ro=ð2N þ 1Þ to the true solution at each observation time Dt. In the physical space, this reflects observa-
tions with variance ro. As in the previous off-line testing, the observation noise is chosen to be ro ¼ 1000. We
initiate each numerical simulation with randomly chosen initial states uj;mjm (or ûk;mjm in Fourier space).

In Figs. 9 and 10, we plot the RMS errors as functions of time for FDKF for ensemble of size K ¼ 100 (first
row), the RMS errors as functions of time for ETKF, also for K ¼ 100 (second row), the RMS errors as func-
tions of ensemble size for FDKF (third row), and the ensemble error variances as functions of ensemble size
for FDKF (fourth row). For the panels in the first two rows, the RMS errors are averaged over space only.
For the panels in the third row, the RMS errors are averaged over space and time (from Lo ¼ 50 to L ¼ 100).
The ensemble error variance is defined as
error variance ¼ Varðuk
j;mjm � uj;mÞ; ð56Þ
where the variance is taken over each ensemble member, space and time (also between Lo ¼ 50 and L ¼ 100).
From our simulations, we first notice that the forward Euler simply trusts the observations, as suggested by

the off-line testing, regardless of the spectra (this case mimics Regime B in Section 3 where ro < E, see Figs. 3
and 4). We also notice similar behavior as in the scalar case for Regime C with x > c (see Section 3), that is,
the backward Euler with time discretized noise rh;k over damps the system and hence the prior forecast states
deviate too far away from the noisy observations. For the trapezoidal scheme with time discretized noise, the
filter is marginally unstable since jF h;kð1� Kh;k;1gÞj � 1 (see Fig. 8). The information criteria improve the sta-
bility of both filters as predicted by the off-line testing with statistical accuracy nearly comparable to that of
the truth filter with all the different spectra and resolutions. Thus, the off-line test criteria successfully predict
all features of the filter performance.

Our numerical simulations suggest that both schemes (FDKF and ETKF) gives comparable performance
in term of errors (e.g. compare also the filtered solutions of FDKF and ETKF in Figs. 11 and 12, respectively).
The ETKF is not robust in the sense that for an ensemble size of less than 50, the filter diverges (results not
shown), while the FDKF with smaller ensemble size (even with only one realization) is performing as well as
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Fig. 9. Uniform damping, Ek ¼ 100 with Dt ¼ 50 and N ¼ 20: RMS errors as functions of time for FDKF with ensemble size K ¼ 100 (first
row), second row for ETKF also with K ¼ 100, RMS errors as functions of ensemble size for FDKF (third row), and ensemble error variances
as functions of ensemble size for FDKF (fourth row). The panels in the first column depict simulations with forward Euler, second column
with backward Euler, and third column with trapezoidal. In each panel, ‘true’ indicates the true filter, ‘fd’ denotes the finite difference
approximate filter, ‘info’ denotes the approximate filter with information criterion noise variance, and ‘obs’ denotes the observation error.
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Fig. 10. Uniform damping, Ek 
 k�5=3 with Dt ¼ 50 and N ¼ 20: RMS errors as functions of time for FDKF with ensemble size K ¼ 100 (first
row), second row for ETKF also with K ¼ 100, RMS errors as functions of ensemble size for FDKF (third row), and ensemble error variances
as functions of ensemble size for FDKF (fourth row). The panels in the first column depict simulations with forward Euler, second column
with backward Euler, and third column with trapezoidal. In each panel, ‘true’ indicates the true filter, ‘fd’ denotes the finite difference
approximate filter, ‘info’ denotes the approximate filter with information criterion noise variance, and ‘obs’ denotes the observation error.
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Fig. 11. Snapshots of filtered solutions with FDKF as functions of model space after L ¼ 100 assimilation cycles for uniform damping,
Ek 
 k�5=3 with Dt ¼ 50 and N ¼ 20. In each panel, we show the filtered solution (solid), the true signal (dashes), and the observations
(circle).

3704 E. Castronovo et al. / Journal of Computational Physics 227 (2008) 3678–3714



0 1 2 3 4 5 6
–200

–100

0

100

200
Forward Euler

model grid

0 1 2 3 4 5 6
–200

–100

0

100

200
Backward Euler

model grid

0 1 2 3 4 5 6
–200

–100

0

100

200
Trapezoidal

model grid

0 1 2 3 4 5 6
–200

–100

0

100

200
Forward Euler,info

model grid

0 1 2 3 4 5 6
–200

–100

0

100

200
Backward Euler,info

model grid

0 1 2 3 4 5 6
–200

–100

0

100

200
Trapezoidal,info

model grid

Fig. 12. Snapshots of filtered solutions with ETKF as functions of model space after L ¼ 100 assimilation cycles for uniform damping,
Ek 
 k�5=3 with Dt ¼ 50 and N ¼ 20. In each panel, we show the filtered solution (solid), the true signal (dashes), and the observations
(circle).
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that with larger ensemble size in terms of RMS errors. In Figs. 9 and 10 (fourth row), we notice that the for-
ward Euler has the smallest ensemble error variance since as in Section 3, the Kalman gain is 1 and all ensem-
ble members trust the observations. In contrast, the over-damped backward Euler with time discretized noise
has Kalman gain 0 (see Fig. 8). In this situation, all ensemble members trust the dynamics and therefore it is
obvious that the ensemble error variances are smaller than the those of the truth model. From the comparisons
between two schemes, the FDKF is preferable since it is a less expensive scheme (the ETKF involves compu-
tations on matrices of size K � N while FDKF are composed of independent scalar filters), it is independent of
tunable parameters (recall that ETKF depends on variance inflation), and more importantly, its filtered solu-
tions are as skillful as ETKFs with FDKF neglects the correlation between different wavenumbers, whereas
ETKF accounts these correlations.
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Fig. 13. Uniform damping, Ek 
 k�5=3 with Dt ¼ 50 and N ¼ 40: RMS errors as functions of time for FDKF with ensemble size K ¼ 100 (first
row), second row for ETKF also with K ¼ 100, RMS errors as functions of ensemble size for FDKF (third row), and ensemble error variances
as functions of ensemble size for FDKF (fourth row). The panels in the first column depict simulations with forward Euler, second column
with backward Euler, and third column with trapezoidal. In each panel, ‘true’ indicates the true filter, ‘fd’ denotes the finite difference
approximate filter, ‘info’ denotes the approximate filter with information criterion noise variance, and ‘obs’ denotes the observation error.
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Now we check the filter performance for variations of model resolution N ¼ 20, 40 and 80 (see Figs. 13 and
14). In a standard extended Kalman filter, the higher the model resolution, the larger size the error covariance
matrix. In principle, the basic idea of an ensemble Kalman filter, including ETKF is to approximate the error
covariance matrix by the sample covariance from many realizations. Thus, the higher model resolution in
ETKF requires larger ensemble size (see [15, Chapter 3]). In our ETKF simulations, we use K ¼ 200 for
N ¼ 80 but K ¼ 100 for N ¼ 20 and 40. On the other hand, we see that the FDKF (including those of the time
discretized schemes) are not sensitive at all to the variations of resolutions, especially small ensemble size per-
forms as well as large ensemble size (see Figs. 13 and 14).

From our numerical tests, we learn that the stable implicit schemes (backward Euler and trapezoidal) are
the best filters provided that their system noises are chosen to satisfy the information criteria. Between these
two schemes, the backward Euler performs as well as the true filter. All these tendencies are fully predicted by
off-line testing. In particular the superior performance of backward Euler over the trapezoidal method for the
decaying spectrum can be traced to the decaying stability factor for large spatial wave numbers in Fig. 8. The
spectacular failure of the filtering performance of backward Euler and trapezoidal with standard time discret-
ized noise is again predicted by the off-line Kalman gain which predicts full reliance on the highly inaccurate
discrete dynamics without observation input.

Practically, both implicit filters in Fourier space are computationally inexpensive with such a giant time step
and thus one can afford large ensemble size. However, we also found that a large ensemble size is not neces-
sary. As we have seen earlier, even one realization is often acceptable. Moreover, the scalar Fourier domain
filter is not sensitive to the variations of model resolution and independent of tunable parameters. The omis-
sion of accounting for the correlation between different modes in our scalar filtering is also found to be insig-
nificant. In contrast, an ensemble Kalman filter that mimics the extended Kalman filter suggests that more
realizations are needed when the model resolution is increased for filter convergence; the ensemble Kalman
filter also depends on the variance inflation coefficient.
5.2. Filtering turbulent signals with selective damping

Here we consider (5) with d ¼ 0, and l > 0, so that there is selective damping at larger spatial wave num-
bers. In Section 5.1, we tested the filter in a highly energetic turbulent field, while here, we will perform the
filtering with a less energetic system. That is, we choose the equipartition spectrum Ek ¼ 1 and less turbulent
energy spectrum Ek ¼ k�5=3. In our testing, we fix the advective coefficient c ¼ 1, the diffusivity coefficient
l ¼ 0:1 (the same parameter as in [14]). The observation noise variance ro ¼ 60 (in Fourier space, this corre-
sponds to noise with variance r̂o ¼ 60=ð2N þ 1Þ, which is larger than the energy spectra Ek for all k when
N ¼ 20) and the observation time Dt ¼ 1. Here, the observation time Dt is chosen to be larger than the cor-
relation times of all wave numbers except for wave numbers 1, 2 and 3.

In this section, we will focus on the filter performance for resolution N ¼ 20. To illustrate the generality of
the theoretical guidelines, for this simple advection-diffusion equation we consider a simple central difference
approximation. In Fourier space, the spatial derivative is given by
o

ox
uðxj; �Þ �

ujþ1 � uj�1

2h
! i

h
sinðkhÞ; ð57Þ

o2

ox2
uðxj; �Þ �

ujþ1 � 2uj þ uj�1

h2
! � 4

h2
sin2 kh

2

� �
: ð58Þ
Thus, the approximate scheme for the advection–diffusion equation has
kk ¼ �
4l

h2
sin2 kh

2

� �
� i

c
h

sinðkhÞ: ð59Þ
As in Sections 3 and 5.1, we perform our testing with three time discretization strategies: forward Euler, back-
ward Euler, and trapezoidal. To each approximate filter, we check the role of information criteria. With obser-
vation time Dt ¼ 1, the forward Euler is an unstable numerical predictor ðjF h;kj > 1Þ while the two other
implicit schemes are always stable with only weak damping for the trapezoidal method.
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Fig. 14. Uniform damping, Ek 
 k�5=3 with Dt ¼ 50 and N ¼ 80: RMS errors as functions of time for FDKF with ensemble size K ¼ 200 (first
row), second row for ETKF also with K ¼ 200, RMS errors as functions of ensemble size for FDKF (third row), and ensemble error variances
as functions of ensemble size for FDKF (fourth row). The panels in the first column depict simulations with forward Euler, second column
with backward Euler, and third column with trapezoidal. In each panel, ‘true’ indicates the true filter, ‘fd’ denotes the finite difference
approximate filter, ‘info’ denotes the approximate filter with information criterion noise variance, and ‘obs’ denotes the observation error.
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Fig. 15. Selective damping, Ek ¼ 1 with Dt ¼ 0:5 and N ¼ 20: RMS errors as functions of time for FDKF with ensemble size K ¼ 100 (first
row), second row for ETKF also with K ¼ 100, RMS errors as functions of ensemble size for FDKF (third row), and ensemble error variances
as functions of ensemble size for FDKF (fourth row). The panels in the first column depict simulations with forward Euler, second column
with backward Euler, and third column with trapezoidal. In each panel, ‘true’ indicates the true filter, ‘fd’ denotes the finite difference
approximate filter, ‘info’ denotes the approximate filter with information criterion noise variance, and ‘obs’ denotes the observation error.
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Fig. 16. Selective damping, Ek ¼ k�5=3 with Dt ¼ 0:5 and N ¼ 20: RMS errors as functions of time for FDKF with ensemble size K ¼ 100 (first
row), second row for ETKF also with K ¼ 100, RMS errors as functions of ensemble size for FDKF (third row), and ensemble error variances
as functions of ensemble size for FDKF (fourth row). The panels in the first column depict simulations with forward Euler, second column
with backward Euler, and third column with trapezoidal. In each panel, ‘true’ indicates the true filter, ‘fd’ denotes the finite difference
approximate filter, ‘info’ denotes the approximate filter with information criterion noise variance, and ‘obs’ denotes the observation error.
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The predictions of the off-line test criteria in this regime indicate that both implicit schemes with either dis-
cretizated noise or augmented noise by information criteria satisfy the practical controllability criteria as well
as strong filter stability although the trapezoidal method filter is less stable. As earlier, the off-line criteria for
the unstable explicit Euler scheme predict that the filter trusts the observations. Figures demonstrating all of
these facts are omitted for brevity.

In Figs. 15 and 16 (first row), we compare the RMS errors of FDKF for constant energy spectrum and
relatively smooth spectrum, respectively, for ensemble size K ¼ 100. Here, we see that the true filter performs
better for energy spectrum Ek ¼ k�5=3. The role of the spectra here is completely explained by Theorem 1 in
Section 4, i.e., the filter trusts the observations more for equipartition energy spectrum and trusts the dynamics
more for Ek ¼ k�5=3 (which is also confirmed by the off-line testing which we omit). As predicted in the off-line
testing, forward Euler trusts the observations while both implicit schemes are comparable to the true model
regardless of how the system noises are chosen. In this regime, the information criteria improve both implicit
filters insignificantly. From our simulations, we also notice that the trapezoidal scheme converges slower than
backward Euler (see the panels in the first row of Fig. 16), which is clearly reflected by the fact that the filter
stability function, jF h;kð1� Kh;k;1Þj of backward Euler is smaller than that of the trapezoidal method.

Our numerical simulations suggest that both schemes (FDKF and ETKF) perform comparably in term of
errors (e.g. compare also the filtered solutions of FDKF and ETKF in Figs. 15 and 16, respectively). However,
one should note that ETKF is sensitive to variance inflation coefficient and ensemble size. For this experiment,
we fixed the variance inflation at 10% and we show results only with ensemble size K ¼ 100 since the filter
diverges with K 6 50. The FDKF performs remarkably well throughout the variations of ensemble size in
terms of RMS errors (see the panels in the third row of Figs. 15 and 16) even with a single realization. In each
simulation, the ensemble error variance (see the panels in the fourth row of Figs. 15 and 16) decreases as a
function of ensemble size.
6. Concluding discussion

This paper develops new theoretical guidelines and illustrates their potential applicability for real-time fil-
tering turbulent signals in complex systems such as those arising for weather prediction and climate change.
These issues are studied here in the simplest context of plentiful spatial observations, i.e., the number of obser-
vations equals the number of mesh points for a scalar field although these observations can be infrequent in
time compared to the local correlation time of the turbulent signal. Such a situation can occur practically for
regional weather prediction models in populated areas in developed countries. On the theoretical side, this is
the simplest context to develop and analyze radical filtering strategies with large model errors which can have
filtering skill while avoiding the ‘‘curse of ensemble size”. Diverse results have been developed throughout the
paper so it is useful to summarize them along with their potential significance here.

In Section 3, we illustrated the fashion in which a recent theory [22] for filtering complex systems with tur-
bulent energy spectra and plentiful observations can be developed into practical off-line test criteria through
explicit formulas for filtering noisy turbulent signals. The off-line criteria include explicit formulas for the
asymptotic Kalman gain, strategies to avoid filter divergence using information criteria, and assessment of
asymptotic filter stability. All of these off-line criteria were presented in the context of discrete filters for a com-
plex scalar equation test problem as guaranteed by the theory in [22]; however, one needs to develop criteria
and methods for discrete filtering of the scalar test problem with large model error in stiff parameter regimes in
order to gain insight into filtering rough turbulent signals from PDE’s even with plentiful observations. This
has been done in detail in Section 3 with surprising new phenomena. The off-line criteria and elementary
numerical experiments show that in various regimes of parameters, the natural discretized noise with an impli-
cit scheme can violate practical controllability and yield completely inaccurate filtering for the signal even
though the filter is asymptotically strongly stable as for the backward Euler method; the information criteria
restore practical controllability as a natural way to account for model error and avoid filter divergence. Also
the first order accurate backward Euler filter with augmented noise is often a more statistically accurate filter
than the second order trapezoidal method because it has better asymptotic filter stability. Stable filtering for
the unstable Euler method occurs because the filter trusts observations.
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The off-line guidelines for filter performance developed in Section 3 were tested extensively in Section 5 for
the forced dissipative advection equation with very rough turbulent spectra, uniform damping, and less fre-
quent observations in Section 5.1 and for smoother spectra with selective damping and more frequent obser-
vations in Section 5.2. First, it was established that the off-line test criteria for filter performance from Section
3 are applicable to these more difficult test cases to predict and understand successful and unsuccessful filter
performance. In particular the information criteria for the system noise accounts for enough of the discrete
model error to restore accurate filter performance for the implicit methods as comparable to the perfect model
as shown in Section 5.1 in this difficult test bed. A second goal achieved in Section 5 is to illustrate that the off-
line guidelines for the diagonal Fourier domain filter apply to the extended Kalman filter in physical space
which generates additional errors which do not respect the Fourier diagonal structure.

Significantly, it is also demonstrated in Sections 3 and 5 that accurate statistical filtering with the implicit
schemes and the information criteria with large time steps can be achieved with extremely small ensemble sizes,
even as small as a single member to address ‘‘the curse of ensemble size”. Futhermore, as discussed in Section
5, the Fourier space filtering methods require no adjustable parameters and much smaller ensemble size when
compared with standard ensemble Kalman filters which involve adjustable parameters such as variance infla-
tion. Recently, two of the authors have applied the diagonal stochastic Fourier filters to the Lorenz 96 model
from atmosphere science [21,23,24] and compared their performance directly to the non-linear EKTF for the
perfect model in that context as an extremely stringent test problem for this approach [17]; they found that
FDKF supersedes ETKF in a fully turbulent regime.

In another direction, explicit rigorous mathematical criteria were developed in Section 4 to provide guide-
lines to address important questions for operational models: If plentiful observations are available on a range
of spatial mesh sizes, what is gained in filter performance by increasing the resolution of the operational
model? How does this depend on the nature of the turbulent spectrum in the signal being filtered? Finally,
two of the authors have utilized the theory in [22] combined with the same overall strategy utilized in this
paper to develop guidelines for filtering with sparse regular observations where several new phenomena
beyond this work occur [6].
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Appendix A. Time discretization

In this appendix, the derivation of the system noise for (1) is presented for the explicit and implicit schemes.
For explicit forward Euler, we substitute
uðt þ DtÞ � uðtÞ
Dt

ðA:1Þ
for duðtÞ=dt in (1) and recalling that ~r _W ðtÞ 
 ~rDt�
1
2N ð0; 1Þ, with N ð0; 1Þ a normal random variable with mean

zero and variance one, we obtain
uðt þ DtÞ ¼ ð1þ kDtÞuðtÞ þ ~rDt
1
2N ð0; 1Þ: ðA:2Þ
Thus, the model noise variance is given by ~r2Dt.
For implicit backward Euler, we have
uðt þ DtÞ � uðtÞ ¼ kDtuðt þ DtÞ þ ~rDt
1
2N ð0; 1Þ; ðA:3Þ
solving for uðt þ DtÞ, we obtain
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uðt þ DtÞ ¼ ð1� kDtÞ�1uðtÞ þ ð1� kDtÞ�1~rDt
1
2N ð0; 1Þ ðA:4Þ
with system variance rh ¼ j1� kDtj�2~r2Dt.
For symmetric trapezoidal method, we have
uðt þ DtÞ � uðtÞ ¼ kDt
2
ðuðt þ DtÞ þ uðtÞÞ þ ~rDt

1
2N ð0; 1Þ ðA:5Þ
which results in
uðt þ DtÞ ¼
1þ kDt

2

1� kDt
2

uðtÞ þ 1� kDt
2

� ��1

~rDt
1
2N ð0; 1Þ ðA:6Þ
with variance rh ¼ 1� kDt
2

�� ���2
~r2Dt.

Appendix B. Limiting Kalman gain

Consider the complex system variable umjm, satisfying the evolution–observation system
umþ1jm ¼ Fumjm þ rmþ1; ðB:1Þ
vmþ1 ¼ g�umjm þ ro ðB:2Þ
with rm ¼ hjrmj2i and ro ¼ hjroj2i. Then the limiting Kalman filter is given by
�umjm ¼ umjm�1 þ K1ðvm � g�umjm�1Þ; ðB:3Þ
where �um=m is the mean of um/m and K1 is the limiting Kalman gain and it is obtained by
K1 ¼
r1g

g2r1 þ ro
ðB:4Þ
with r1 the limiting variance. In order to obtain an analytical expressions for the limiting quantities we con-
sider u ¼ aþ ib, v ¼ xþ iy; the symbol F and the noise satisfy
F ¼ Aþ iB; ðB:5Þ
ro ¼ ro;r þ iro;i and r ¼ rr þ iri: ðB:6Þ
We can thus rewrite (B.1) and (B.2) as
amþ1jm

bmþ1jm

� �
¼

A �B

B A

� �
amjm

bmjm

� �
þ

rr
mþ1

ri
mþ1

� �
; ðB:7Þ

xmþ1

ymþ1

� �
¼ g

1 0

0 1

� �
�amjm
�bmjm

� �
þ

ro;r

ro;i

� �
: ðB:8Þ
The Kalman filter asymptotic covariance is a fixed point T of the following
T ¼ F ðT � TGTðGTGT þ R0ÞÞ�1F T þ R ðB:9Þ

for general matrices
F ¼
A B

�B A

� �
; G ¼ gI ; R ¼ rI ; and Ro ¼ roI : ðB:10Þ
We seek a symmetric T of the form
T ¼
a c

c b

� �
: ðB:11Þ
By explicitly multiplying out Eq. (B.9), we find that
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a ¼ b ¼ ½g4rðab� c2Þ þ g2ðrðaþ bÞ þ ðA2 þ B2Þðab� c2ÞÞðroÞ
þ ðr þ A2aþ B2bþ 2ABcÞðroÞ2�ðg4ðab� c2Þ þ g2ðaþ bÞro þ ðroÞ2Þ�1

; ðB:12Þ

c ¼ ABð�aþ bÞ þ ðA2c� B2cÞðroÞ2

g4ðab� c2Þ þ g2ðaþ bÞro þ ðroÞ2
: ðB:13Þ
Notice also that c ¼ 0 solves (B.13). Now if we assume a ¼ b and c ¼ 0, we can obtain a solution for (B.12).
Furthermore, if we consider the system to be observable and controllable, then there is only one fixed point to
Eq. (B.9) and thus r1 ¼ a. Substituting r1 in (B.4), we obtain Eq. (30).
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